Accès gratuit
Numéro |
Orthod Fr
Volume 80, Numéro 1, Mars 2009
81e réunion scientifique de la S.F.O.D.F.
|
|
---|---|---|
Page(s) | 99 - 135 | |
DOI | https://doi.org/10.1051/orthodfr/2009001 | |
Publié en ligne | 28 mars 2009 |
- Agha-Hosseini F, Dizgah IM, Amirkhani S. The composition of unstimulated whole saliva of healthy dental students. J Contemp Dent Pract 2006;7:104–111. [PubMed] [Google Scholar]
- Ahn SJ, Lim BS, Lee YK, Nahm DS. Quantitative determination of adhesion patterns of cariogenic streptococci to various orthodontic adhesives. Angle Orthod 2006;76:869–875. [PubMed] [Google Scholar]
- Al-Waheidi EM. Allergic reaction to nickel orthodontic wires: A case report. Quintessence Int 1995;26:385–387. [PubMed] [Google Scholar]
- de Almeida Pdel V, Grégio AM, Machado MA, de Lima AA, Azevedo LR. Saliva composition and functions: A comprehensive review. J Contemp Dent Pract 2008;9(3):72–80. [PubMed] [Google Scholar]
- Ash JL, Nikolai RJ. Relaxation of orthodontic elastomeric chains and modules in vitro and in vivo. J Dent Res 1978;57:685–690. [CrossRef] [PubMed] [Google Scholar]
- Assad M, Lombardi S, Bernèche S, Desrosiers EA, Yahia LH, Rivard CH. Assays of cytotoxicity of the nickel-titanium shape memory alloy. Ann Chir 1994;48:731–736. [PubMed] [Google Scholar]
- Babakhin AA, Volozhin AI, Dubova LV, Lebedenko IY, Babakhina YA, Zhuravleva AA, et al. Histamine releasing activity of dental materials as the indicator of their biocompatibility. Stomatologiia (Mosk) 2008;87:8–17 (in Russian) [PubMed] [Google Scholar]
- Barrett RD, Bishara SE, Quinn JK. Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. Am J Orthod Dentofacial Orthop 1993;103:8–14. [Google Scholar]
- Bass JK, Fine H, Cisneros GJ. Nickel hypersensitivity in the orthodontic patient. Am J Orthod Dentofacial Orthop 1993;103:280–285. [CrossRef] [PubMed] [Google Scholar]
- Bentahar Z, Bourzgui F, Zertoubi M, EL Adioui-Joundy S, Morgan G. Dégradation électrochimique des matériaux métalliques utilisés en orthodontie. Int Orthod 2005;3:5–17. [Google Scholar]
- Berge M, Gjerdet NR, Erichsen ES. Corrosion of silver soldered orthodontic wires. Acta Odontol Scand 1982;40(2):75-79. [CrossRef] [PubMed] [Google Scholar]
- Berradja A, Willems G, Celis JP. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in vitro. II Wear patterns. Aust Orthod J 2006;22:21–29. [PubMed] [Google Scholar]
- Bishara SE, Barrett RD, Selim MI. Biodegradation of orthodontic appliances. Part II. Changes in the blood level of nickel. Am J Orthod Dentofacial Orthop 1993;103:115–119. [CrossRef] [PubMed] [Google Scholar]
- Bocca B, Forte G, Senofonte O, Violante N, Paoletti L, De Berardis B, et al. A pilot study on the content and the release of Ni and other allergenic metals from cheap earrings available on the Italian market. Sci Total Environ 2007,15;388(1-3):24–34. [Google Scholar]
- Bour H, Nicolas JF, Garrigue JL, Demidem A, Schmitt D. Establishment of nickel-specific T cell lines from patients with allergic contact dermatitis: Comparison of different protocols. Clin Immunol Immunopathol 1994;73:142–145. [CrossRef] [PubMed] [Google Scholar]
- Bourauel C, Scharold W, Jäger A, Eliades T. Fatigue failure of as-received and retrieved NiTi orthodontic archwires. Dent Mater 2008;24(8):1095-1101. [CrossRef] [PubMed] [Google Scholar]
- Brantley WA, Guo W, Clark WA, Iijima M. Microstructural studies of 35 °C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation. Dent Mater 2008;24:204–210. [CrossRef] [PubMed] [Google Scholar]
- Brett CMA, Ioanitescu I, Trandafir F. Influence of the biological fluid on the corrosion of dental amalgam. Corrosion Science 2004;46:2803–2816. [CrossRef] [Google Scholar]
- Burse AB, Swartz ML, Phillips RW, Dykema RW. Comparison of the in vitro and in vivo tarnish of three gold alloys. J Biomed Mater Res 1972;6:267–277. [CrossRef] [PubMed] [Google Scholar]
- Celebić A, Baucić M, Stipetić J, Baucić I, Miko S, Momcilović B. Ion release from gold/platinum dental alloy: Could release of other elements be accountable in the contact allergy attributed to the gold? J Mater Sci Mater Med 2006;17:301–305. [Google Scholar]
- Chang JC, Oshida Y, Gregory RL, Andres CJ, Barco TM, Brown DT. Electrochemical study on microbiology-related corrosion of metallic dental materials. Biomed Mater Eng 2003;13:281–295. [PubMed] [Google Scholar]
- Chun MJ, Shim E, Kho EH, Park KJ, Jung J, Kim JM, et al. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod 2007;77:483–488. [CrossRef] [PubMed] [Google Scholar]
- Cioffi M, Gilliland D, Ceccone G, Chiesa R, Cigada A. Electrochemical release testing of nickel-titanium orthodontic wires in artificial saliva using thin layer activation. Acta Biomater 2005;1:717–724. [CrossRef] [PubMed] [Google Scholar]
- Costa M. Molecular mechanisms of nickel carcinogenesis. Biol Chem 2002;383:961–967. [CrossRef] [PubMed] [Google Scholar]
- Darabara MS, Bourithis LI, Zinelis S, Papadimitriou GD. Metallurgical characterization, galvanic corrosion, and ionic release of orthodontic brackets coupled with Ni-Ti archwires. J Biomed Mater Res B Appl Biomater 2007;81:126–134. [PubMed] [Google Scholar]
- Dunlap CL, Vincent SK, Barker BF. Allergic reaction to orthodontic wire: Report of case. J Am Dent Assoc 1989;118:449–450. [PubMed] [Google Scholar]
- Edgar M, Dawes C, O'Mullane D. Saliva and Oral Health, 3rd ed. London: British Dental Association, 2004, 64 p. [Google Scholar]
- Ehrlich A, Kucenic M, Belsito DV. Role of body piercing in the induction of metal allergies. Am J Contact Dermat 2001;12:151–155. [CrossRef] [PubMed] [Google Scholar]
- Eliades T, Eliades G, Athanasiou AE, Bradley TG. Surface characterization of retrieved niti orthodontic archwires. Eur J Orthod 2000;22:317–326. [CrossRef] [PubMed] [Google Scholar]
- Eliades T, Eliades G, Watts DC. Intraoral aging of the inner headgear component: A potential biocompatibility concern? Am J Orthod Dentofacial Orthop 2001;119:300-306. [Google Scholar]
- Eliades T, Athanasiou AE. In vivo aging of orthodontic alloys: Implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod 2002;72:222–237. [PubMed] [Google Scholar]
- Eliades T, Eliades G, Silikas N, Watts DC. In vitro degradation of polyurethane orthodontic elastomeric modules. J Oral Rehabil 2005;32:72–77. [CrossRef] [PubMed] [Google Scholar]
- Eliades T, Hiskia A, Eliades G, Athanasiou AE. Assessment of bisphenol – a release from orthodontic adhesives. Am J Orthod Dentofacial Orthop 2007;131:72–75. [CrossRef] [PubMed] [Google Scholar]
- Eliades T. Orthodontic materials research and applications: Part 2. Current status and projected future developments in materials and biocompatibility. Am J Orthod Dentofacial Orthop 2007;131:253–262. [CrossRef] [PubMed] [Google Scholar]
- Es-Souni M, Brandies HF. On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys: NiTi42 and NiTi42Cu7. Biomaterials 2001;22:2153–2161. [CrossRef] [PubMed] [Google Scholar]
- Es-Souni M, Es-Souni M, Fischer-Brandies H. On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility. Biomaterials 2002;23:2887–2894. [CrossRef] [PubMed] [Google Scholar]
- Esser D, Alvarez-Llamas G, de Vries P., Weening D, Voenk RJ, Roelofsen H. Sample stability and protein composition of saliva : Implications for its use as a diagnostic fluid. Biomarker Insights 2008;3:25–37. [PubMed] [Google Scholar]
- Gjerdet NR, Herø H. Metal release from heat-treated orthodontic archwires. Acta Odontol Scand 1987;45:409–414. [CrossRef] [PubMed] [Google Scholar]
- Gjerdet NR, Erichsen ES, Remlo HE, Evjen G. Nickel and iron in saliva of patients with fixed orthodontic appliances. Acta Odontol Scand 1991;49(2):73–78. [CrossRef] [PubMed] [Google Scholar]
- Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin Oral Investig 2008;12:1–8. [CrossRef] [PubMed] [Google Scholar]
- Gonçalves TS, Morganti MA, Campos LC, Rizzatto SM, Menezes LM. Allergy to auto-polymerized acrylic resin in an orthodontic patient. Am J Orthod Dentofacial Orthop 2006;129:431–435. [CrossRef] [PubMed] [Google Scholar]
- Gonçalves TS, Minghelli Schmitt V, Thomas M, Lopes de Souza MA, Macedo de Menezes L. Cytotoxicity of two autopolymerized acrylic resins used in orthodontics. Angle Orthod 2008;78:926–930. [CrossRef] [PubMed] [Google Scholar]
- Gonçalves TS, de Menezes LM, Silva LEA. Residual monomer of autopolymerized acrylic resin according to different manipulation and polishing methods. Angle Orthod 2008;78:722–727. [CrossRef] [PubMed] [Google Scholar]
- Goon AT, Goh CL. Metal allergy in Singapore. Contact Dermatitis 2005;52(3):130–132. [CrossRef] [PubMed] [Google Scholar]
- Greppi AL, Smith DC, Woodside DG. Nickel hypersensitivity reactions in orthodontic patients. A literature review. Univ Tor Dent J 1989;3:11–14. [PubMed] [Google Scholar]
- Grimsdottir MR, Gjerdet NR, Hensten-Pettersen A. Composition and in vitro corrosion of orthodontic appliances. Am J Orthod Dentofacial Orthop 1992;101:525–532. [CrossRef] [PubMed] [Google Scholar]
- Grosgogeat B, Pernier C, Schiff N, Comte V, Huet A. Biocompatibility and resistance to corrosion of orthodontic wires. Orthod Fr 2003;74:115–121. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gürsoy S, Acar AG, Sežen C. Comparison of metal release from new and recycled bracket-archwire combinations. Angle Orthod 2005;75:92–94. [PubMed] [Google Scholar]
- Gürsoy UK, Sokucu O, Uitto VJ, Aydin A, Demirer S, Toker H, et al. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. Eur J Orthod 2007;29:555–558. [CrossRef] [PubMed] [Google Scholar]
- House K, Sernetz F, Dymock D, Sandy JR, Ireland AJ. Corrosion of orthodontic appliances – should we care? Am J Orthod Dentofacial Orthop 2008;133:584-592. [Google Scholar]
- Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials 2002;23:59–63. [CrossRef] [PubMed] [Google Scholar]
- Huang HH. Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4v alloy. Biomaterials 2003;24:275–282. [CrossRef] [PubMed] [Google Scholar]
- Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, et al. Ion release from niti orthodontic wires in artificial saliva with various acidities. Biomaterials 2003;24:3585–3592. [Google Scholar]
- Huang HH, Lee TH. Electrochemical impedance spectroscopy study of Ti-6Al-4v alloy in artificial saliva with fluoride and/or bovine albumin. Dent Mater 2005;21:749–755. [CrossRef] [PubMed] [Google Scholar]
- Huang HH. Variation in surface topography of different NiTi orthodontic archwires in various commercial fluoride-containing environments. Dent Mater 2007;23:24–33. [CrossRef] [PubMed] [Google Scholar]
- Huang TH, Liao PH, Li HY, Ding SJ, Yen M, Kao CT. Orthodontic adhesives induce human gingival fibroblast toxicity and inflammation. Angle Orthod 2008;78:510–516. [CrossRef] [PubMed] [Google Scholar]
- Huget EF, Patrick KS, Nunez LJ. Observations on the elastic behavior of a synthetic orthodontic elastomer. J Dent Res 1990;69:496–501. [CrossRef] [PubMed] [Google Scholar]
- Humphrey SP, Williamson RT. A review of saliva: Normal composition, flow, and function. J Prosthet Dent 2001;85:162–169. [CrossRef] [PubMed] [Google Scholar]
- Hunt NP, Cunningham SJ, Golden CG, Sheriff M. An investigation into the effects of polishing on surface hardness and corrosion of orthodontic archwires. Angle Orthod 1999;69:433–440. [PubMed] [Google Scholar]
- Iijima M, Endo K, Ohno H, Yonekura Y, Mizoguchi I. Corrosion behavior and surface structure of orthodontic Ni-Ti alloy wires. Dent Mater J 2001;20:103–113. [CrossRef] [PubMed] [Google Scholar]
- Iijima M, Endo K, Yuasa T, Ohno H, Hayashi K, Kakizaki M, et al. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys. Angle Orthod 2006;76:705–711. [PubMed] [Google Scholar]
- Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 1998;80:268–282. [PubMed] [Google Scholar]
- Janson GR, Dainesi EA, Consolaro A, Woodside DG, de Freitas MR. Nickel hypersensitivity reaction before, during, and after orthodontic therapy. Am J Orthod Dentofacial Orthop 1998;113:655–660. [CrossRef] [PubMed] [Google Scholar]
- Jia W, Beatty MW, Reinhardt RA, Petro TM, Cohen DM, Maze CR, et al. Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res 1999;48:488–495. [CrossRef] [PubMed] [Google Scholar]
- Kalimo K, Mattila L, Kautiainen H. Nickel allergy and orthodontic treatment. J Eur Acad Dermatol Venereol 2004;18:543–545. [CrossRef] [PubMed] [Google Scholar]
- Kerosuo H, Moe G, Kleven E. In vitro release of nickel and chromium from different types of simulated orthodontic appliances. Angle Orthod 1995;65:111–116. [PubMed] [Google Scholar]
- Kerosuo H, Kullaa A, Kerosuo E, Kanerva L, Hensten-Pettersen A. Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears. Am J Orthod Dentofacial Orthop 1996;109:148–154. [CrossRef] [PubMed] [Google Scholar]
- Kim H, Johnson JW. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod 1999;69:39–44. [PubMed] [Google Scholar]
- Kim YY, Kim MY, Park YM, Kim HO, Koh CS, Lee HK. Evaluating the nickel content in metal alloys and the threshold for nickel-induced allergic contact dermatitis. J Korean Med Sci 2008;23:315–319. [CrossRef] [PubMed] [Google Scholar]
- Kopperhud HBM, Wellendorf H, Kleven IS. Composition of and leachable products from polymer based orthodontic materials. The Joint Meeting of the Continental European (CED) and Scandinavian (NOF) Divisions of the IADR 2005, Sep 16. Consultable sur http://iadr.confex.com/iadr/eur05/techprogram/abstract_67336.htm. [Google Scholar]
- Kusy RP, Whitley JQ. Degradation of plastic polyoxymethylene brackets and the subsequent release of toxic formaldehyde. Am J Orthod Dentofacial Orthop 2005;127:420–427. [CrossRef] [PubMed] [Google Scholar]
- Lazarov A. Sensitization to acrylates is a common adverse reaction to artificial fingernails. J Eur Acad Dermatol Venereol 2007;21:169–174. [CrossRef] [PubMed] [Google Scholar]
- Lee SH, Chang YI. Effects of recycling on the mechanical properties and the surface topography of nickel-titanium alloy wires. Am J Orthod Dentofacial Orthop 2001;120:654–663. [CrossRef] [PubMed] [Google Scholar]
- Levine MJ. Development of artificial salivas. Crit Rev Oral Biol Med 1993;4:279–286. [PubMed] [Google Scholar]
- Lewis JB, Messer RL, Pitts L, Hsu SD, Hansen JM, Wataha JC. Ni(II) ions dysregulate cytokine secretion from human monocytes. J Biomed Mater Res B Appl Biomater 2009;88:358–365. [PubMed] [Google Scholar]
- Li L, Liu L. Microbial corrosion of dental alloy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004;21:864–866 (in Chinese). [PubMed] [Google Scholar]
- Lin MC, Lin SC, Lee TH, Huang HH. Surface analysis and corrosion resistance of different stainless steel orthodontic brackets in artificial saliva. Angle Orthod 2006;76:322–329. [PubMed] [Google Scholar]
- Lindsten R, Kurol J. Orthodontic appliances in relation to nickel hypersensitivity. A review. J Orofac Orthop 1997;58:100–108. [PubMed] [Google Scholar]
- Liu GT, Duh JG, Chung KH, Wang JH. Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys. Surf Coat Technol 2005;200:2100–2105. [CrossRef] [Google Scholar]
- Maijer R, Smith DC. Biodegradation of the orthodontic bracket system. Am J Orthod Dentofacial Orthop 1986;90:195–198. [CrossRef] [PubMed] [Google Scholar]
- Maruthamuthu S, Rajasekar A, Sathiyanarayanan S, Muthukumar N, Palaniswamy N. Electrochemical behaviour of microbes on orthodontic wires. Current Science 2005;89:988–996. [Google Scholar]
- Matasa CG. Characteristics of used orthodontic brackets. In: Eliades G, Eliades T, Brantley WA, Watts DC, Eds. Dental materials in vivo : Aging and related phenomena, Quintessence, 2003:139–154. [Google Scholar]
- Matasa CG. Microbial attack of orthodontic adhesives. Am J Orthod Dentofacial Orthop 1995;108:132–141. [CrossRef] [PubMed] [Google Scholar]
- Matasa CG. Attachment corrosion and its testing. J Clin Orthod 1995;29:16–23. [PubMed] [Google Scholar]
- Mayhew MJ, Kusy RP. Effects of sterilization on the mechanical properties and the surface topography of nickel-titanium arch wires. Am J Orthod Dentofacial Orthop 1988;93:232–236. [CrossRef] [PubMed] [Google Scholar]
- Merritt K, Brown SA. Release of hexavalent chromium from corrosion of stainless steel and cobalt-chromium alloys. J Biomed Mater Res 1995;29:627–633. [CrossRef] [PubMed] [Google Scholar]
- Miura F, Mogi M, Ohura Y, Hamanaka H. The super-elastic property of the japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop 1986;90:1–10. [Google Scholar]
- Mohlin B, Müller H, Odman J, Thilander B. Examination of chinese NiTi wire by a combined clinical and laboratory approach. Eur J Orthod 1991;13:386–391. [CrossRef] [PubMed] [Google Scholar]
- Noble J, Ahing SI, Karaiskos NE, Wiltshire WA. Nickel allergy and orthodontics, a review and report of two cases. Br Dent J 2008 22;204:297–300. [Google Scholar]
- Olefjord I, Wegrelius L. Surface analysis of the passive state. Corrosion Science 1990;31:89–98. [CrossRef] [Google Scholar]
- Oncag G, Tuncer AV, Tosun YS. Acidic soft drinks effects on the shear bond strength of orthodontic brackets and a scanning electron microscopy evaluation of the enamel. Angle Orthod 2005;75:247–253. [PubMed] [Google Scholar]
- Oshida Y, Sachdeva RC, Miyazaki S. Microanalytical characterization and surface modification of TiNi orthodontic archwires. Biomed Mater Eng 1992;2(2):51–69. [PubMed] [Google Scholar]
- Oudar J, Marcus P, Corrosion mechanisms in theory and practice, 2nd ed. 2002,740 p. [Google Scholar]
- Park HY, Shearer TR. In vitro release of nickel and chromium from simulated orthodontic appliances. Am J Orthod 1983;84:156–159. [CrossRef] [PubMed] [Google Scholar]
- Peitsch T, Klocke A, Kahl-Nieke B, Prymak O, Epple M. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation. J Biomed Mater Res A 2007;82:731–739. [PubMed] [Google Scholar]
- Pereira ML, Silva A, Tracana R, Carvalho GS. Toxic effects caused by stainless steel corrosion products on mouse seminiferous cells. Cytobios 1994;77(309):73–80. [PubMed] [Google Scholar]
- Platt JA, Guzman A, Zuccari A, Thornburg DW, Rhodes BF, Oshida Y, et al. Corrosion behavior of 2205 duplex stainless steel. Am J Orthod Dentofacial Orthop 1997;112:69–79. [CrossRef] [PubMed] [Google Scholar]
- Ponsonnet L, Comte V, Othmane A, Lagneau C, Charbonnier M, Lissac M, et al. Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates. Mater Sci Eng C 2002;21:157–165. [CrossRef] [Google Scholar]
- Pun DK, Berzins DW. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures. Dent Mater 2008;24:221–227. [CrossRef] [PubMed] [Google Scholar]
- Putters JL, Kaulesar Sukul DM, de Zeeuw GR, Bijma A, Besselink PA. Comparative cell culture effects of shape memory metal (nitinol), nickel and titanium: A biocompatibility estimation. Eur Surg Res 1992;24:378–382. [CrossRef] [PubMed] [Google Scholar]
- Rahilly G, Price N. Nickel allergy and orthodontics. J Orthod 2003;30:171–174. [CrossRef] [PubMed] [Google Scholar]
- Ratanasathien S, Wataha JC, Hanks CT, Dennison JB. Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 1995;74:1602–1606. [CrossRef] [PubMed] [Google Scholar]
- Reichl FX, Seiss M, Marquardt W, Kleinsasser N, Schweikl H, Kehe K, et al. Toxicity potentiation by H2O2 with components of dental restorative materials on human oral cells. Arch Toxicol 2008;82:21–28. [CrossRef] [PubMed] [Google Scholar]
- Rogers OW. A study in the control of crevice corrosion of silver soldered stainless steel joints. Br Dent J 1977;143:397–403. [CrossRef] [PubMed] [Google Scholar]
- Rose EC, Jonas IE, Kappert HF. In vitro investigation into the biological assessment of orthodontic wires. J Orofac Orthop 1998;59:253–264. [CrossRef] [PubMed] [Google Scholar]
- Ruff CA, Belsito DV. The impact of various patient factors on contact allergy to nickel, cobalt, and chromate. J Am Acad Dermatol 2006;55:32–39. [CrossRef] [PubMed] [Google Scholar]
- Ryhänen J, Niemi E, Serlo W, Niemelä E, Sandvik P, Pernu H, et al. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 1997;35:451–457. [CrossRef] [PubMed] [Google Scholar]
- Saglam AM, Baysal V, Ceylan AM. Nickel and cobalt hypersensitivity reaction before and after orthodontic therapy in children. J Contemp Dent Pract 2004;5:79–90. [PubMed] [Google Scholar]
- Sarkar NK, Redmond W, Schwaninger B, Goldberg AJ. The chloride corrosion behaviour of four orthodontic wires. J Oral Rehabil 1983;10:121–128. [CrossRef] [PubMed] [Google Scholar]
- Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials 2004;25:4535–4542. [CrossRef] [PubMed] [Google Scholar]
- Schiff N, Dalard F, Lissac M, Morgon L, Grosgogeat B. Corrosion resistance of three orthodontic brackets: A comparative study of three fluoride mouthwashes. Eur J Orthod 2005;27:541–549. [CrossRef] [PubMed] [Google Scholar]
- Schweikl H, Schmalz G, Spruss T. The induction of micronuclei in vitro by unpolymerized resin monomers. J Dent Res 2001;80:1615–1620. [CrossRef] [PubMed] [Google Scholar]
- Schweikl H, Altmannberger I, Hanser N, Hiller KA, Bolay C, Brockhoff G, et al. The effect of triethylene glycol dimethacrylate on the cell cycle of mammalian cells. Biomaterials 2005;26:4111–4118. [CrossRef] [PubMed] [Google Scholar]
- Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006;85:870–877. [CrossRef] [PubMed] [Google Scholar]
- Schweikl H, Hartmann A, Hiller KA, Spagnuolo G, Bolay C, Brockhoff G, et al. Inhibition of TEGDMA and hema-induced genotoxicity and cell cycle arrest by n-acetylcysteine. Dent Mater 2007;23:688–695. [CrossRef] [PubMed] [Google Scholar]
- Siargos B, Bradley TG, Darabara M, Papadimitriou G, Zinelis S. Galvanic corrosion of metal injection molded (MIM) and conventional brackets with nickel-titanium and copper-nickel-titanium archwires. Angle Orthod 2007;77:355–360. [CrossRef] [PubMed] [Google Scholar]
- Staerkjaer L, Menné T. Nickel allergy and orthodontic treatment. Eur J Orthod 1990;12:284–289. [CrossRef] [PubMed] [Google Scholar]
- Sutow E. Aging of stainless steel oral and maxillofacial implants. In: Eliades G, Eliades T, Brantley WA, Watts DC, Eds. Dental materials in vivo: Aging and related phenomena. Quintessence, 2003:195–211. [Google Scholar]
- Todd DJ, Burrows D. Nickel allergy in relationship to previous oral and cutaneous nickel contact. Ulster Med J 1989;58:168–171. [PubMed] [Google Scholar]
- Tomakidi P, Koke U, Kern R, Erdinger L, Krüger H, Kohl A, et al. Assessment of acute cyto- and genotoxicity of corrosion eluates obtained from orthodontic materials using monolayer cultures of immortalized human gingival keratinocytes. J Orofac Orthop 2000;61:2–19. [Google Scholar]
- Tufekci E, Mitchell JC, Olesik JW, Brantley WA, Papazoglou E, Monaghan P. Inductively coupled plasma-mass spectroscopy measurements of elemental release from 2 high-palladium dental casting alloys into a corrosion testing medium. J Prosthet Dent 2002;87:80–85. [CrossRef] [PubMed] [Google Scholar]
- Vahed A, Lachman N, Knutsen RD. Failure investigation of soldered stainless steel orthodontic appliances exposed to artificial saliva. Dent Mater 2007;23:855–861. [CrossRef] [PubMed] [Google Scholar]
- Veien NK, Borchorst E, Hattel T, Laurberg G. Stomatitis or systemically-induced contact dermatitis from metal wire in orthodontic materials. Contact Dermatitis 1994;30:210–213. [CrossRef] [PubMed] [Google Scholar]
- Volk J, Leyhausen G, Dogan S, Geurtsen W. Additive effects of TEGDMA and hydrogenperoxide on the cellular glutathione content of human gingival fibroblasts. Dent Mater 2007;23:921–926. [CrossRef] [PubMed] [Google Scholar]
- Vreeburg KJ, de Groot K, von Blomberg M, Scheper RJ. Induction of immunological tolerance by oral administration of nickel and chromium. J Dent Res 1984;63:124–128. [CrossRef] [PubMed] [Google Scholar]
- Walker MP, Ries D, Kula K, Ellis M, Fricke B. Mechanical properties and surface characterization of beta titanium and stainless steel orthodontic wire following topical fluoride treatment. Angle Orthod 2007;77:342–348. [CrossRef] [PubMed] [Google Scholar]
- Wang J, Li N, Rao G, Han EH, Ke W. Stress corrosion cracking of niti in artificial saliva. Dent Mater 2007;23:133–137. [CrossRef] [PubMed] [Google Scholar]
- Wataha JC, Hanks CT, Craig RG. Uptake of metal cations by fibroblasts in vitro. J Biomed Mater Res 1993;27:227–232. [CrossRef] [PubMed] [Google Scholar]
- Wataha JC, Hanks CT, Sun Z. In vitro reaction of macrophages to metal ions from dental biomaterials. Dent Mater 1995;11:239–245. [CrossRef] [PubMed] [Google Scholar]
- Wen X, Zhang N, Li X, Cao Z. Electrochemical and histomorphometric evaluation of the TiNiCu shape memory alloy. Biomed Mater Eng 1997;7:1–11. [PubMed] [Google Scholar]
- Wexler P. Encyclopedia of toxicology, 2nd ed. Oxford: Elsevier, 2005, 2000 p. [Google Scholar]
- Wichelhaus A, Geserick M, Hibst R, Sander FG. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. Dent Mater 2005;21:938–945. [CrossRef] [PubMed] [Google Scholar]
- Yonekura Y, Endo K, Iijima M, Ohno H, Mizoguchi I. In vitro corrosion characteristics of commercially available orthodontic wires. Dent Mater J 2004;23:197–202. [CrossRef] [PubMed] [Google Scholar]
- Zinelis S, Annousaki O, Eliades T, Makou M. Elemental composition of brazing alloys in metallic orthodontic brackets. Angle Orthod 2004;74:394–399. [PubMed] [Google Scholar]
- Zinelis S, Eliades T, Pandis N, Eliades G, Bourauel C. Why do nickel-titanium archwires fracture intraorally? Fractographic analysis and failure mechanism of in vivo fractured wires. Am J Orthod Dentofacial Orthop 2007;132:84–89. [CrossRef] [PubMed] [Google Scholar]